
Java programming language

Page 1 of 3

Define a class named MessagePrinterRunnable that implements the Runnable interface. The class
should have a String attribute to store a message. This message should be set through the constructor
of the class. Implement the run method to print the message attribute to the console. In the main
method of your application, create and start two threads:

The first thread should be created by instantiating the Thread class directly, passing an instance of
MessagePrinterRunnable with a custom message to its constructor.
The second thread should be created using a lambda expression to define the Runnable object,
and it should also print a custom message.

Run your application and observe the output. Both messages should be printed to the console, but the
order in which they appear may vary each time you run the program.

You have been tasked with implementing a part of a monitoring system for an application server that
manages multiple threads. Your job is to write a Java program that performs the following actions:

1. Named Thread Creation: Create a class called Task that implements the Runnable interface.
Within the run() method, assign a unique name to the current thread using
Thread.currentThread().setName() , and then print out that name. Print also the unique

identifier of the current thread using getId() and the beginning of the method's execution. Add a
method processTask to simulate some kind of task using a Thread.slepp. Write a message
when the task is finished.

2. Thread State Monitoring: Start three instances of this class on separate threads in the Main
class. After starting each thread, your program must print the state of the thread using
getState() . Ensure that you print the thread's state at two different moments:

Immediately after calling start() .
After a brief pause (for example, using Thread.sleep(100)), to observe a possible
change in state.

Additional exercises

Concurrent Programming: Basic Thread management

Basic thread handling

Project MessagePrinter

Basic thread information

Thread Task Manager

Java programming language

Page 2 of 3

3. Thread Termination Verification: Finally, after starting all threads, your program should
periodically check whether the threads have completed their execution creating a new Thread to
do this verification that will have a loop waiting to all the threads to finish. Use both the
TERMINATED state and the isAlive() method to print messages indicating whether the

threads have finished.

1. Thread Monitoring Exercise: Create a project called ThreadMonitoringSystem and inside
implement a class named ThreadMonitor with the main method in it that is responsible for
monitoring the state of a thread. Your program will create a thread that performs a simple repetitive
task (SimpleTask class), such as printing a line of text. Use a boolean attribute to control the
execution of this thread. The ThreadMonitor class should periodically check if the thread has
reached a certain number of iterations (getIterationCount method in SimpleTask
class), and if so, request that the thread finish by setting the boolean variable to true . Show in
SimpleTask and in main messages when starting and finishing the thread.

2. Interruption Handling Exercise: Create a project named InterruptionHandler with a
class called MainHandler with the main method in it. Create a thread that performs a
blocking operation, such as waiting with Thread.sleep in an infinite loop
(Thread.sleep(Long.MAX_VALUE)). The main application should be able to interrupt this
thread multiple times (for instance, every 2 seconds) and the thread should be capable of handling
these interruptions by printing a message with the time of the interruption, and then continuing its
execution. After a specific number of interruptions, the thread should be able to cleanly finish its
execution using a boolean to stop correctly.

Project WordCountingGroup

1. Define a class called FileProcessor that implements Runnable . This class should read a
file, count the number of words in it, and print the count. It will have an attribute File with the file
that will be initialized in the constructor.

2. Instantiate a ThreadGroup called "FileProcessorGroup".
3. In the main method, for each file in the directory provided by the user, instantiate a thread from

your class, adding it to the "FileProcessorGroup", and start the thread.
4. After starting all threads, monitor the active count of the group. Every second print a message with

the files pending to process and when all threads have completed, print a message indicating that
all files have been processed.

Project MonitoringFiles

Finishing and interrupting threads

Groups and daemons

Exercise 1: Thread Group for File Processing

Exercise 2: Daemon Thread for Directory Monitoring

Java programming language

Page 3 of 3

1. Create a Java class called DirectoryMonitor that implements Runnable interface. It will
have an attribute File for the directory to check and another attribute with a Set of Strings with the
names of the files in the directory.

2. In the contructor of DirectoryMonitor class you will receive a String with the directory to
check and you will initialized the attributes based on the information received: the directory and the
Set with the names of the files of this directory.

3. In the run method you will check if the directory currently have the same files that the ones stored
in the Set. If a new file is detected you will print a message similar to "added
File:nameFile.extension to directory nameDirectory", and add this file to the Set.

4. This daemon thread should check a specified directory every 10 seconds to see if any new files
have been added.

5. In the main method, create a Thread based on DirectoryMonitor class and stablish it as
deamon.

6. Add new files to the directory to test the daemon created.

